Brief Introduction of Carbon DLS (digital light synthesis) from yang's blog

What is Carbon DLS?

Carbon DLS (digital light synthesis) is an industrial 3D printing process that creates functional, end-use parts with mechanically isotropic properties and smooth surface finishes. You can choose from both rigid and flexible polyurethane materials to meet your application needs for high impact-resistance components.

Common application for Carbon DLS  are:

· complex designs that are challenging to mold

· need for isotropic mechanical properties and smooth surface finish

· production parts in materials comparable to ABS or polycarbonate

· durable components for end use

 

Carbon DLS Material Options

RPU 70 Rigid Polyurethane is manufactured through Carbon’s DLS (digital light synthesis) process. It is a tough all-purpose engineering grade material that comes in black and can be categorized as an ABS-like materials. Ideal part sizes for Carbon materials are 5 in. x 5 in. x 5 in. or less.

Primary Benefits

· Tough material

· UL 94 HB flame resistance classification


Carbon FPU 50 exhibits the highest elongation of any of the 3D printing thermoset resins at 200% making it the most flexible option. Available in black, it falls under the PP-like category of 3D printing resins.

Primary Benefits

· Highest elongation properties

· Fatigue resistance

 

How Does Carbon DLS Work?

Carbon DLS uses CLIP (continuous liquid interface production) technology to produce parts through a photochemical process that balances light and oxygen. It works by projecting light through an oxygen-permeable window into a reservoir of UV-curable resin. As a sequence of UV images are projected, the part solidifies, and the build platform rises.

At the core of the CLIP process is a thin, liquid interface of uncured resin between the window and the printing part. Light passes through that area, curing the resin above it to form a solid part. Resin flows beneath the curing part as the print progresses, maintaining the continuous liquid interface that powers CLIP. Following the build, the 3D-printed part is baked in a forced-circulation oven where heat sets off a secondary chemical reaction that causes the materials to adapt and strengthen.


Previous post     
     Blog home

The Wall

No comments
You need to sign in to comment

Post

By yang
Added Jul 30 '22

Tags

dls

Rate

Your rate:
Total: (0 rates)

Archives